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step and C is approximately expressed by where dzjdt is the group velocity which is given by

260
(l/~eO,UO)A/A,. Evaluation of the last expression yields

C = ———in csc (7rd/2b) farads/meter. (8) of the text.
T

The tc)tal energy in the volume element becomes
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Shielded CoupledStrip Transmission Line
S. B. COHN~

Surrvnarg-An analysis is made of the odd and even TEM modes

on a pair of parallel co-planar strips midway between ground planes.

Rigorous formulas are presented for the case of zero-thickness strips,

while approximate formulas are given for strips of finite thickness and

for strips printed on opposite sides of a thin dielectric sheet supported

in air between ground planes (AIL construction). The characteristic

impedances and the phase velocities of the two modes are necessary

and sufficient information for the design of directional couplers,

ccmplec[-line filters, and other components utilizing the coupling be-

tween parallel-strip lines. In order to facilitate design work, nomo-

grams are included in the paper which give the dimensions of the

coupleckstrip cross section in terms of the odd- and even-mode char-

acteristic impedances. The characteristic-impedance scales of these

nomograms may be read to an accuracy of better than one per cent

over a wide range of values that is sufficient for most purposes.

INTRODUCTION

N

r UMEROUS strip-line components utilize the

coupling between parallel strips as a basic param-

eter in their design. Several examples of such

components are shown in Fig. 1 (next page), where cou-

pled lines are used to achieve a particular effect in each

case. In order to design these circuits to meet prescribed

performance specifications, it is necessary to have ac-

curate data on the coupling effects of parallel strips.

Solutions for the most important parameters have been

obtained, and are presented in this paper.

Fig. 2 (next page) shows transverse field distributions

for two fundamental TEM modes that can exist on a

pair of parallel conducting strips between parallel ground

planes. In Fig. 2(a), strips are at same potential and

carry equal currents in the same direction. Because of

the even symmetry of the electric field about the ver-

tical axis, this mode will be called the even coupled-strip

mode. In Fig. 2(b), strips are at equal but opposite po-

tentials and carry equal currents in opposite directions.

~ Stanford Res. Inst., Menlo Park, Calif.

Due to the odd symmetry of the electric field, this mode

will be called the odd coupled-strip mode. In the case

of the odd mode, the vertical plane of symmetry is

at ground potential, and may be replaced by al thin

conducting wall joined electrically to the horizontal

ground plates. It is clear from the fieldl plots that the

capacitance per strip to ground is less for the evetl case
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Fig. l—Several applications of coupled-strip 1ine construe{ ion.

and more for the odd case than for a single isolated

strip of the same width. Consequently, the characteristic

impedances of the two modes are unequal, being greater

for the even than for the odd. In this paper, sol~ltions

for the two characteristic impedances will be given. 1

These quantities (plus the mode phase velocities, which

are also treated) provide sufficient information for the

1 (After this paper was prepared, a paper by D. Park appeared
with a solution for ZO of the odd mode. The us,e of elliptic-integral
identities shows Park’s formula to be the same as mine. ) D, Park.
“Planar transmission lines, ” TRANS. IRE, VOI. lVITT-3, pp. 8–12;
April, 1955.
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design of directional couplers, filters, and other coupled-

strip-line components. The graphs and nomograms given

in this paper will be of sufficient accuracy for most of

such design work.

,AXIS OF EVEN

k“-’ SYMMETRY

I
(0)

EVEN-MODE ELECTRIC FIELD DISTRIBUTION

AXIS OF ODD SYMMETRY

L

(GROUND POTENTIAL)

(;)
ODD-MODE ELECTRIC FIELD DISTRIBUTION

Fig. 2—Field distribution of the even and odd modes in coupled-
strip line.

The particular cross sections considered here are

shown in Fig. 3. The first, containing zero-thickness

strips, is solved rigorously by the conformal-mapping

technique. This construction may be closely realized in

practice by copper-foil strips sandwiched between di-

electric plates that are clad with copper on their outer

surfaces. Since the cross section is virtually completely

filled with the dielectric material, the phase velocity

for both modes is

v = c/de, , (1)

where c is the velocity of light in free space (3.00(10)8

m/s) and c, is the relative dielectric constant of the

medium in the cross section.

The second cross section in Fig. 3 is of importance in

air-dielectric lines, where the thick strips may be sup-

ported by spaced dielectric beads, by metallic members

at zero-voltage points, or by connectors at the strip

ends. The third cross section utilizes foil strips printed

on both sides of a thin dielectric sheet supported in air

midway between ground plates (AIL construction).

Approximate formulas for the second and third cross

sections are given in this paper. The phase velocity for

Fig. 3(b) is equal to that of light, or, if periodic bead

support is used, it is given by (1) where an equivalent e,

is selected to represent the effect of the spaced beads.

However, the case of Fig. 3(c) is more complex, since the

dielectric constant is not uniform in the cross section.

The electric field energy in the dielectric sheet is greater

for the odd mode than for the even mode, and therefore

the phase velocity for the former will be less than for

the latter. An approximate formula is given in this

paper for the ratio of these velocities.

RIGOROUS FORMULAS FOR ZERO-

THICKNESS STRIPS

The following exact formulas are derived in Ap-

pendix A for the cross section of Fig. 3(a):

307 K(k:)
20. = —_-

<Er K(ke)
ohms (2)

where 20, is the even-mode characteristic impedance

measured from one strip to g~ound, ~ is the complete

elliptic integral of the first kind, c, is the relative dielec-

tric constant of the material filling the cross section, and

ke= tan, (+:)tanh (:%) (3)

!.

t--++ --4 b

(a)

ZERO THICKNESS STRIPS

(b)
THICK STRIPS

A

(c)
PRINTED DIELECTRIC SHEET

Fig. 3—Coupled-strip-line cross sections considered in this p~per.

The variables w, b, and s are dimensions defined in

Fig. 3(a). For the odd mode, the characteristic imped-

ance from one strip to ground is

30$r K(k;)
zoo = —.— ohms,

tier K(ko)
(?)
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where

‘o=tanh(Hcoth(:”w(‘)

and all symbols are defined as above. If one allows s to

become infinite, both ZO. and 200 reduce to the charac-

teristic impedance of an isolated strip between ground

planes. The nature of the dependence of ZOe and ZOO on

w/b and s/b is illustrated graphically by Fig. 4.

20 L 1 1 I I I I 1 I I 1 J
01 015 02 03 04 05 06 08 ,0 ,5 20 30

Fig. 4—Graph of Z,. and Zoo >W w/b and s/h.

When a pair of strips are used as a balanced transmis-

sion line, the characteristic impedance zb measured

betweeti the strips for the odd-mode distribution is the

most useful quantity. This is related to ZOO by

~b = 220.. (8)

In the design of a directional coupler, filter, or other

cornpcment, ZOO and 20. are first computed to provide

the desired circuit performance. Then the dimensions

w, s, and b that will yield these characteristic imped-

ances are determined. The following equations are con-

venient for calculating w/b and s/b,

w 2
— tanh–l ~k .ko (9)

7=7r

and

s ~’anh-’(=.”ti:)’10)_F=T
The parameters k. and k. may be obtained as functions

of ZOe and ZOO from a single-curve graph of either (2)

or (5).

NOMOGRAMS FOR ZERO-THICKNESS STRIPS

Eqs. (9) and (10) are expressed in nomogram form in

Figs. 5 and 6 (pages 32 and 33). In Fi,g. 5, a straight

edge aligned with the specified values of 2.. and 200 on

the outer scales will intersect the proper value of zu/b,

while in Fig. 6 a similar procedure will yield s/b. “Irhese

nomograms are designed to be read accurately over a

range of 2.. and 2.0 large enough for mclst purposw. ln

this range, w/b and s/b can be determined with suffi-

cient precision to ensure that 2.. and ZOO will be within

one per cent of the desired values.

FRINGING CAPACITANCES FOR ZERO THICKNESS

STRIPS

A quantity of frequent interest is the equivalent

fringing capacitance for zero-thickness coupled sl-rips.z

It will be assumed for simplicity that the strips are

wide enough to allow the fringing capacitances at the

two edges of each strip to be independent of w/b. This

will hold with good accuracy for w/b >0.35, which covers

most practical applications. Subject to tlhis assuml)tion,

(1) of a previous paper’ may be written as folllows:

94.15
Zoe =

[

— ohms (11)

( )1/z:++(Cj’(o) + Cf: 0,;

and

94.15
zoo =

[

— ohms (12)

~; : + + (c/(o) + Cf:
( )1o,+

where e = 0.0885 c, in mmf per cm, Cf’(0) is the fringing

capacitance from one edge to one ground plane in mmf

per cm for a single strip of zero thickness (i.e., for

s/b~ ~ ), and Cf.’(0) s/b) and Cfo’(O, s/b) are the cor-

responding fringing capacitances in mmf per cm at the

adjacent edges of a pair of strips for the even and odd

electric-field distributions. (See the sketches in Fig. 7 on

page 34). The following rigorous formulas for the

fringing capacitances were obtained by letting w/b4 a

in the analysis for zero-thickness coupled strips:

c;(o)
. L in 2 = 0.440!7 (13)

e T

()c,; 0,;

— ( )~ in 1 + tanh ~
e T

s
— ()2 in cosh ~

b–x
(14)

2 (I ha>,e been informed in a private communication thai- C. k.
Hachemeister has previously derived generaI formulas for these
capacitances. His results are in a different form than mine, and their
equivalence was not checked.)

1 S. B. Cohn, “Characteristic impedance of the shielded-strip
transmission line, “ ‘rRANS. IRE, VO1. MTT-2, pp. 52–57; Jdy, 1954.
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C,= RELATIVEDIELECTRICCONSTANTOF
MEOIUM FILLING THE CROSS SECTION
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Even-Mode Case

For the even mode, the characteristic impedance is

given by

s
—— ()~ in sinh ~ .

7–T ‘“) ‘oe(%’:)

94.15 ohms

001 002 005 0.1 ~ 02 05 10 2

b

Fig. 7—Fringing capacitances for coupled strips of zero thickness.

Eqs. (14) and (15) are plotted in Fig. 7, where it is seen

that they merge into (13) for s/b >2. AS s/b+O, cf.’+o

and Cfo’-+ ~. Eqs. (14) and (15) agree, as they should,

with Marcuvitz’s equivalent circuit for a transverse

slit in the common broad wall between two wave-guides.4

Also, they agree with 01iner’s5 equivalent circuit for a

transverse gap in a single strip, which he deduced from

Marcuvitz’s expressions.

COUPLED THICK STRIPS IN UNIFORM DIELECTRIC

A rigorous solution for coupled thick strips has not

been obtained, but the approximate formulas given

below should be sufficiently accurate for most purposes.

These formulas are based on the solution for zero-

thickness strips, and on the fringing-capacitance formu-

la for a thick semi-infinite plate between ground planes.

Consequently, the resulting formulas are expected to

have their best accuracy for tbless than about 0.1, and

w/b Z 0.35. However, they may be used with diminished

accurdcy considerably outside these ranges. In all

cases, the phase velocity is given by (1).

4 N. Maurcuvitz, “Waveguide Handbook, ” McGraw-HilI Co.,
Inc., New York, N. Y., pp. 373-375; 1951.

$ A. A. Oliner, “Equivalent circuits for discontinuities in bal-
anced strip transmission line, ” TRMW. IRE, vol. .MTT-3, pp. 134-
143; March, 1955.

——

“{=++(43++’ a}“1’)
where Cf 1(t/b) is the fringing capacitance for a single

thick strip of thickness t.1 Cf.’ (t/b, s/b) is the fringing

capacitance at the coupled edge of a thick strip in the

even mode. The following approximation for Cf.’ (t/b,

s/b) in terms of known quantities is assumed:

Cf%’ -3=WC’;:)~’17’
This relation gives the correct result for t/b-0, s/b~O,

and s/b-+ ~. It is expected to give good results through-

out the range of interest. Substitution of (17) in (16)

(with a certain amount of manipulation) yields the

following approximation for 20,:

()Cf’ ;

c; (0)

“[z”(lo)-z(;o+lrohms’18)
The values Z“(w/b, t/b) and ZO(w/b, O) are characteristic

impedances of single strips, which may be read from a

graph in reference 1. Zo, (w/b, O, s/b) is the even-mode

zero-thickness-strip characteristic impedance given

above and Cf’ (t/b) and Cf’ (0) are fringing capacitances

that are also given graphically in reference 2.

Odd-Mode Case

For the odd mode, the following definition for Cf~’ is

assumed when s is large compared to t.

c’%’:)=+)”cf::)’”‘1”
As in the even mode case, this leads to
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“[.4:)‘%ilrohrns”’20’“oo(:~:)+’’’’o:)--%il
The definition of terms in (20) is similar to that given

for (1:3).

For s small, (19) can not be expected to be valid, and

a better approximation for CfO’ is

Cfw) “f’od+’+ ‘2’)

where e(t/s) is the parallel-plate capacitance across the

gap per unit length. Manipulation of (21) gives

‘00(:-)+’+)

[ ()Cf’ +
1

‘1

–1

2 c:’(o) 2t
— — — —=-] + —

377 377s
ohms. (22)

e

A judicious estimate of the valid ranges for (20) and

(22) is s/t z 5 for the former and s/t S 5 for the latter.

STRIPS PRINTED ON DIELECTRIC SHEET

For the cross section of Fig. 3(c), (18) should be used

for the even-mode case for all s/t, while (20) should

yield ~ir results for the odd mode when s/t> 10. How-

ever, ~or s/t S 10, the following approximation for CfO’ is

proposed:

2e,q..z,

- ‘[%3-4+4’ 0)’24)
The corresponding inductance is not affected by c.,.

It can be deduced from C,o by applying elementary

transmission-line theory as follows:

1
LOO =

C2C00~,=1

and

(25)

Therefore

‘00(:’+’-i)

_2[cf(+)-c(o)+’zo(+@~’

377e, 3772 J

t

“(+)-3=c’o’-3+‘Szoi’0)“ ’23) - ‘!c;(ii,c’(o!
The last term in this expression (derived in Appendix B)

is the capacitance across the gap due to the field flux

inside the dielectric sheet, subject to the assumption

that only a tangential component of electric field exists

on the dielectric sheet surfaces in the gap region. This

assumption gives good results for s/tsmall, but is poor

for s/; large. The quantity e,= e,c,s is the absolute dielec-

tric constant of the dielectric sheet, while Z,(s/t, O) is

the characteristic impedance of a shielded single-strip

air-dielectric line whose ground plate spacing is t,strip

width is s, and strip thickness is zero. Z,(s/t, O) may

therefore be obtained from the characteristic-impedance

( )]
–1/2

‘z, :, 0
t

+ ohms.
377’

(27)

This should give good results for s/ts 10.

The phase velocity of the even mode cannot be com-

puted accurately, but will usually be only a per cent or

so less than the velocity of light in free space. However,

the phase velocity of the odd mode will be affected

considerably by the field in the dielectric sheet in the

gap region. The following approximate formula gives

the ratio of the phase velocities of the two modes.

graph?

Based on (23), the capacitance

unit length, for the odd mode is



36 IRE TRANSACTIONS—MICROWAVE THEORY AND TECHNIQUES Ocfober

APPENDIX A

DERIVATION OF ZOe

Fig. 8 shows the successive transformations used in

the conformal-mapping solution for the odd mode in

coupled strip line. The solid boundaries denote ‘(electric”

(or perfectly conducting) walls, for which E Xn = O and

H n = O, while the dotted boundaries denote “magnet-

ic” walls, for which E. n = O and HXn = O. Therefore,

inside the rectangle in Fig. 8(a) the electric and magnet-

ic field lines form a uniform rectangular grid, and in

terms of the dimensions of the rectangle shown in the

figure, the characteristic impedance of the transmission

line whose cross section is the rectangle is given by

A“’
20 = 1207E ohms,

--+-i%+U
(0)

I t PLANE

(29)

I 2 345 6 1’
------ —---- -

t.. m ‘-~ -101 ~ w
k k
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i-k *
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l-k
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~y
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I
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0,0

x
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(d)

Fig. 8—Transformations used in the derivation of 2,0.

Due to the properties of conformal mapping, the

characteristic impedance of a given cross section is not

changed by successive analytic transformations, In this

derivation, three successive transformations are used:

transformation of the region inside the rectangle in the

w plane into the entire upper half of the t plane; the

upper-half t plane into the upper-half t‘plane; and the

upper-half t’ plane into the bounded region in the z

plane shown in Fig. 8(d). Hence the characteristic im-

pedance of the z plane cross section is given by (29).

Examination of this cross section shows it to be equiva-

lent to one-quarter of the coupled-strip cross section,

and to have the field distribution shown in Fig. 2(a)

for the even mode. Thus, ZO. is related to Zo by

Zo K’
Zo. =—2–= 30T. F.

(30)

It now remains to relate K and K’ to the dimensions of

the coupled strip line.

The transformation from the interior of the rectangle

in the w plane to the upper-half tplane is given by Ober-

hettinger and Magnus,G and the information essential

to our purpose is shown in Figs. 8(a) and 8(b). Corre-

sponding points on the boundaries in the w and t plane

are indicated by numerals 1 to 6. The coordinates of

these points in the two planes are related by

K = K(k) (31)

K’ = K(k’) (32)

where A“(k) and ~(k’) are complete elliptic integrals of

the first kind with parameter k and k‘ respective y. k‘

is related to k by

k’ = <l – kz. (33)

The transformation from the t plane to the t’plane is

made purely for convenience, since it greatly simplifies

the evaluation of the various constants in the transfor-

mation to the z plane. The function used to connect t and

t’ is

l+kt
t’=— (34)

I–kt”

This “bilinear” function transforms the upper-half t

plane into the upper-half t’plane, and the real t axis

into the real t’axis. However, the points on the real t’

axis are distributed in a manner better suited for the

next step. The coordinates of corresponding points

are shown in Figs. 8(b) and (c).

The final transformation to the z plane is carried

out by the Schwartz-Christoffel method. This tech-

nique is described in various books, such as ‘(Static

and Dynamic Electricity, ” by W. R. Smythe, T and

therefore the reader will be assumed to be familiar with

its principles. The differential equation relating the t’

and z planes is

4 =C(t’ –tz’)~z(t’– t~)ps(t’– tp’)~f’,
dt’

(35)

where t.’is the value of t’at the point corresponding to

the nth corner in the z-plane boundary, and

E F. Oberhettinger and W. Magnus, “Anwendung der Ellip.
tischen Funktionen in Physik und Technik, ” Springer-Verlag, Berlin,
D. 32: 1949.

~ \V. R Smythe, “Static and Dynamic Electricity, ” McGraw-
HilI Book Co., Inc., New York, N. Y., p. 80 ff.; 1939.
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@n=u–l (36)
T

where an is the angle in radians inside the z plane

bounclary at the nth corner. The values of fn’, z., an and

~n are summarized below:

Point t: 2. an b.
~ o jyl r/2 1—.

2

6 cc w o –1

P P o 7r/2 1——
2

thus

dz c c’
(37)

G= <t’ – p~-~(f’ – @) = <f’(f’ – p)

where C/ (t’ — LX) is treated as a new constant C’. (This

fails cmly at t’= ~ , where it does not matter.) Eq. (37)

may be integrated with the aid of a table of inetgrals

(e.g., B. O. Peirce!):

d

t’–;

z = C’. 2 tanh–l — + c“. (38)
t’

We see at once that C“ = O, since z is required to be

zero when t‘= p. Also, insertion of the corresponding

point:; z =jyl and f’= o shows that C’ =yI/r. Hence (38)

reduces to

2yl

d

P~ = ——.tanh—l 1–—.
%- t’

(39)

Next, we will substitute corresponding values of t’and

z at the edges of the strip.

2yl

(

l+k

)

1/2

~1 = —– tanh–l 1 — — P (40)
T l–i”

2yl

(

l–k

)

1/2

X2 = —– tanh–l l–r+=+ . (41)
‘n-

lBut the dimensions b, s, and w of the coupled strip line

are related to the z plane dimensions by

b = 2yl, s = 2X], 2W + s = 2X2 (42)

and therefore

s 2

( )

1/2
_ tan&l 1 – !+_!. ~ (43)

T=7r l–k

27,4)’+s 2

(

l–k

)

11~
— tanh–l 1 – — P. (44)

b—=~ 1+1”

It now remains to eliminate p from (43) and (44) and

to solve for k. The use of several hyperbolic-function

identities leads to the following result:

8 B. O. Pierce, “A Short Table of Integrals, ” 3rd Edition, Ginn
and Co.; p. 18, Eq. 113; 1929.

‘=tanh(:”:)‘anh(=+ ““
When the subscript “e” is added to k and k‘ to denote

the even mode, (45), (30), (31), (32) and (33) are e{[uiva-

lent to (5), (6) and (7).

Derivation of Zoo

The procedure and transformation functions are

exactly the same for ZOOas for Z08, except that the point

P is placed between points 6’ and 2 instead of beltweel]

2 and 3 in Figs. 8(c) and (d). Also, point 2 is made to

occur at z = O, and point P at z =jyl. These changes

cause the vertical section of boundary between z = o

and z =jyl to be an electric wall instead of a magnetic

wall. As a result, the field inside the z-plane boundary is

equivalent to that in the coupled strip line for the odd

mode, and

K(k’)
ZOO= ;=30T—.

K(k)

After the same steps are carried out as above, the for-

mula for k is found to be

‘=tanh(H”c0th(+”%
When the subscript “0” is added, (2), (3) and (4) Iesult.
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Fig. 9—Equivalence between the region imided a printed
dielectric sheet and a shield strip line.

APPENDIX B

GAP CAP.ICXTANCE IN THE PRINTED-SHEET CASE

Fig. 9(a) shows the region that is assumed to be

equivalent to the printed dielectric sheet in the vicinity

of the gap between parallel strip pairs. A magnetic

wall may be inserted in the horizontal plane 01 sym-

metry without disturbing the field, and then the sepa-
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rated halves of the region can be arranged as in Fig. 9(b)

without disturbing the field or the capacitance. Finally,

Babinet’s transformation is applied to Fig. 9(b), causing

all electric and magnetic walls and E and H’ fields to be

interchanged. Thus the E field pattern in (b) is equiva-

lent to the -H field pattern in (c). By reversing the direc-

tion of the H field lines in the lower half of (c), the
magnetic walls on each side of the electric-wall strip

may be removed. By Babinet’s principle, capacitance

per unit length CO= C~aD in (b) is related to inductance

per unit length LO in (c) by Co/e =Lo/p. Then since

Lo = Zo/c,

where c is the velocity of light and ZO is the characteristic

impedance of the cross section in Fig. 9(c), we may write

Zo
c—gap=

377’C “

However, if the dielectric sheet has a relative dielectric

constant e,,, this should be rewritten as

z% O C(fr,zo
c ~ap.—.

3772C 377-

where ZO and c are evaluated for G = 1.

Highll?ower Ferrite Load
ALVIN CLAVIN~

Summary—The principles of ferromagnetic resonance have been

well described in literature. It is the purpose of thk paper to point out

the application of these principles to the design of practical micro-

wave components, especially for high power. The various types of

ferrite microwave circuits that can be used in the design of a load

isolator are presented. The advantages and disadvantages of each of

these circuits are discussed in regard to the electrical, mechanical,

thermal, and magnetic field requirements. Experimental data are

given for the optimum design of nonreciprocal ferrite absorbers for

rectangular guide. Finally, practical design information for a power

circulator in rectangular wavegnide is presented which has been

modified for use as a load isolator. This device has extremely high

isolations (5o db) and low insertion loss (.5 db), and has maintained an

isolation in excess of 30 db over a 25 per cent bandwidth with a

permanent magnet field. Power handling ability of 250 kw peak with

a .001 duty cycle is easily accomplished without external cooling.

Thk isolator requires quite small magnetic fields for proper opera-

tions and hence packaged isolator is quite lightweight. Use of this

power circulatorforhigh-power modulators and duplexersis discussed.

INTRODUCTION

T

HE principles of ferromagnetic resonance at

microwave frequencies have been presented by a

number of authors. 1–5 It is not the purpose of this

paper to elaborate on their work, but instead to discuss

the application of the theory to the design of practical

microwave components. According to the theory, if an

H field is circularly polarized in a plane perpendicular to

t Canoga Corp., Van Nuys, Calif.
1 C. L. Hogan, “The ferromagnetic Faraday effect at microwave

frequencies and its applications, ” The Microwave Gyrator, Bell
Sys. Tech. Jour., vol. 31, pp. 1-31; January, 1952.

2 J. H. Rowen, “Ferrites in microwave application s,” Bell SYs.
Tech. Jour., vol. 32, pp. 1333–1369; November, 1953.

s H. N. Chait, “Non-reciprocal microwave components, ” Con-
vention Record of the IRE 1954, part 8.

4 H. Suhl and L. R. Walker, “Topics in guided-wave propagation
through gyromagnetic media, Part I—The completely filled cylindri-
cal guide, ” Bell Sys. Tech. Jour., vol. 33, May, 1954.

g H. Suhl and L. R. Walker, “Topics in guided-wave propagation
through gyromagnetic media, Part II—Transverse magnetization
and non-reciprocal helix, ” Bell Sys. Tech. Jow., vol. 33, July, 1954.

Isolators

the magnetization of a ferrite rod or slab, an increasing

phase shift and absorption of power occurs as the val-

ue of the magnetizing field is made higher. There is a

particular value of the magnetizing field which brings

the ferrite into gyromagnetic resonance whenever the

sense of the circular polarization is positive (the same

rotational sense as the coil current producing the mag-

netizing field). At this point, a large amount of power is

absorbed from the rf field by the ferrite; however, little

is absorbed from a wave having negative sense of circu-

lar polarization. A plot of the phase shift and power

absorption, is shown in Fig. 1 as a function of the field

,’----

Fig. l—Relative absorption and phase shift of positively-polarized
wave with respect to the negatively-polarized wave.

strength or rf frequency. This is a typical resonant

dispersion curve and it should be noted that it is possible

to obtain phase shift with very little power absorption

-w”


