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step and C is approximately expressed by
260
C ~ —In csc (wd/2b) farads/meter.
T
The total energy in the volume element becomes

— 1 -
f f — B4 + CV? | ds,
LJad 2 A

and the power in the z direction is given by

dUT F 1 n dZ
= f f — e F%dA +CV? | —;
dt L Ja 2 ddt

aly =
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where dz/dt is the group velocity which is given by
(1/v equo)N/N,;. Evaluation of the last expression yields
(8) of the text.
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Shielded Coupled-Strip Transmission Line

S. B. COHNt

Summary—An analysis is made of the odd and even TEM modes
on a pair of parallel co-planar strips midway between ground planes.
Rigorous formulas are presented for the case of zero-thickness strips,
while approximate formulas are given for strips of finite thickness and
for strips printed on opposite sides of a thin dielectric sheet supported
in air between ground planes (AIL construction). The characteristic
impedances and the phase velocities of the two modes are necessary
and sufficient information for the design of directional couplers,
coupled-line filters, and other components utilizing the coupling be-
tween parallel-strip lines. In order to facilitate design work, nomo-
grams are included in the paper which give the dimensions of the
coupled-strip cross section in terms of the odd- and even-mode char-
acteristic impedances. The characteristic-impedance scales of these
nomograms may be read to an accuracy of better than one per cent
over a wide range of values that is sufficient for most purposes.

INTRODUCTION

b "UMEROQUS strip-line components utilize the
N coupling between parallel strips as a basic param-

eter in their design. Several examples of such
components are shown in Fig. 1 (next page), where cou-
pled lines are used to achieve a particular effect in each
case. In order to design these circuits to meet prescribed
performance specifications, it is necessary to have ac-
curate data on the coupling effects of parallel strips.
Solutions for the most important parameters have been
obtained, and are presented in this paper.

Fig. 2 (next page) shows transverse field distributions
for two fundamental TEM modes that can exist on a
pair of parallel conducting strips between parallel ground
planes. In Fig. 2(a), strips are at same potential and
carry equal currents in the same direction. Because of
the even symmetry of the electric field about the ver-
tical axis, this mode will be called the even coupled-strip
mode. In Fig. 2(b), strips are at equal but opposite po-
tentials and carry equal currents in opposite directions.

Stanford Res. Inst., Menlo Park, Calif.

Due to the odd symmetry of the electric field, this mode
will be called the odd coupled-strip mode. In the case
of the odd mode, the vertical plane of symmetry is
at ground potential, and may be replaced by a thin
conducting wall joined electrically to the horizontal
ground plates. It is clear from the field plots that the
capacitance per strip to ground is less for the even case

DIRECTIONAL COUPLER

BALANCED
STRIP LINE

SINGLE STRIFP U

LINE ———m

SINGLE-TO- BALANCED
STRIP-LINE TRANSFORMER

DELAY LINE
Fig. 1—Several applications of coupled-strip line construction.

and more for the odd case than for a single isolated
strip of the same width. Consequently, the characteristic
impedances of the two modes are unequal, being greater
for the even than for the odd. In this paper, solutions
for the two characteristic impedances will be given.t
These quantities (plus the mode phase velocities, which
are also treated) provide sufficient information for the

_ } (After this paper was prepared, a paper by D. Park appeared
with a solution for Zy of the odd mode. The use of elliptic-integral
identities shows Park’s formula to be the same as mine.) D, Park.

“Planar transmission lines,” TrRawns. IRE, vol. MTT-3, pp. 8-12;
April, 1955.
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design of directional couplers, filters, and other coupled-
strip-line components. The graphs and nomograms given
in this paper will be of sufficient accuracy for most of
such design work.

! SYMMETRY
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ODD-MODE ELECTRIC FIELD DISTRIBUTION

Fig. 2—Field distribution of the even and odd modes in coupled-
strip line.

AXIS OF EVEN

The particular cross sections considered here are
shown in Fig. 3. The first, containing zero-thickness
strips, is solved rigorously by the conformal-mapping
technique. This construction may be closely realized in
practice by copper-foil strips sandwiched between di-
electric plates that are clad with copper on their outer
surfaces. Since the cross section is virtually completely
filled with the dielectric material, the phase velocity
for both modes is

v=c/Ve, (D

where ¢ is the velocity of light in free space (3.00(10)8
m/s) and ¢, is the relative dielectric constant of the
medium in the cross section.

The second cross section in Fig. 3 is of importance in
air-dielectric lines, where the thick strips may be sup-
ported by spaced dielectric beads, by metallic members
at zero-voltage points, or by connectors at the strip
ends. The third cross section utilizes foil strips printed
on both sides of a thin dielectric sheet supported in air
midway between ground plates (AIL construction).
Approximate formulas for thie second and third cross
sections are given in this paper. The phase velocity for
Fig. 3(b) is equal to that of light, or, if periodic bead
support is used, it is given by (1) where an equivalent e,
is selected to represent the effect of the spaced beads.
However, the case of Fig. 3(c) is more complex, since the
dielectric constant is not uniform in the cross section.
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The electric field energy in the dielectric sheet is greater
for the odd mode than for the even mode, and therefore
the phase velocity for the former will be less than for
the latter. An approximate formula is given in this
paper for the ratio of these velocities.

Ricorous ForMULAS FOR ZERO-
THICKNESS STRIPS

The following exact formulas are derived in Ap-
pendix A for the cross section of Fig. 3(a):

30r K(k)

\/er K(ke)
where Zo, is the even-mode characteristic impedance
measured from one strip to ground, K is the complete

elliptic integral of the first kind, e, is the relative dielec-
tric constant of the material filling the cross section, and

ohms ' (2)

T w T w—+ s
k. = tanh ( ) tanh ( > (3)
2 b 2 b
B =1 = k2 (4)
4
i
b
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i
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. ~ D

(c)
PRINTED OIELECTRIC SHEET

Fig. 3—Coupled-strip-line cross sections considered in this paper.

The variables w, b, and s are dimensions defined in
Fig. 3(a). For the odd mode, the characteristic imped-
ance from one strip to ground is

30m K(k)

ZOO '\/ET K( ko) th, (5)
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where

ko

tanh (W “ 6
an R ?> (6)
kS = \/1 - k027 (7)

and all symbols are defined as above. If one allows s to
become infinite, both Zg, and Zy, reduce to the charac-
teristic impedance of an isolated strip between ground
planes. The nature of the dependence of Zg, and Zg, on
w/b and s/b is illustrated graphically by Fig. 4.
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Fig. 4—Graph of Zs and Zo, vs w/b and s/b.

When a pair of strips are used as a balanced transmis-
sion line, the characteristic impedance Z; measured
between the strips for the odd-mode distribution is the
most useful quantity. This is related to Z¢, by

Zs = 2Z00. (8

In the design of a directional coupler, filter, or other
component, Zy and Zy, are first computed to provide
the desired circuit performance. Then the dimensions
w, s, and b that will yield these characteristic imped-
ances are determined. The following equations are con-
venient for calculating w/b and s/b,

w 2 _
— = — tanh™! \/k ko, 9
b T
and
) 2 1 — ko —k—e
~— = — tanh™! < 1/—) (10)
b T 1 — ke ko

The parameters k, and %, may be obtained as functions
of Zy, and Zy, from a single-curve graph of either (2)
or (5).
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NoMOGRAMS FOR ZERO-THICKNESS STRIPS

Eqgs. (9) and (10) are expressed in nomogram form in
Figs. 5 and 6 (pages 32 and 33). In TFig. 5, a straight
edge aligned with the specified values of Zy, and 7, on
the outer scales will intersect the proper value of w/b,
while in Fig. 6 a similar procedure will vield s/b. These
nomograms are designed to be read accurately over a
range of Zy, and Zg, large enough for most purposes. In
this range, w/b and s/b can be determined with suffi-
clent precision to ensure that Z,, and Zy, will be within
one per cent of the desired values.

FRINGING CAPACITANCES FOR ZERO THICKNESS
STRIPS

A quantity of frequent interest is the equivalent
fringing capacitance for zero-thickness coupled strips.?
It will be assumed for simplicity that the strips are
wide enough to allow the fringing capacitances at the
two edges of each strip to be independent of w/b. This
will hold with good accuracy for w/b = 0.35, which covers
most practical applications. Subject to this assumption,
(1) of a previous paper® may be written as follows:

94.15
Zo, = ohms (11)
_Tw 1 s
\/er [_ + - (Cj/(o) + Cfel <Oy -
b € b
and
94.15
Loo = ohms (12)
_[w 1 S
Ve [— + —(C/(0) + Cyf (0, ~>]
b € b

where €= 0.0885 ¢, in mmf per cm, C;/(0) is the {ringing
capacitance from one edge to one ground plane in mmf
per cm for a single strip of zero thickness (i.e., for
s/b— ), and C;,'(0, s/b) and C;,’(0, s/b) are the cor-
responding fringing capacitances in mmf per cm at the
adjacent edges of a pair of strips for the even and odd
electric-field distributions. (See the sketches in Fig. 7 on
page 34). The following rigorous formulas for the
fringing capacitances were obtained by letting w/h—
in the analysis for zero-thickness coupled strips:

/(0 2
JLZ = —1In2 = 0.4407 (13)
€ v
0(02)
S A ln 1 -+ tanh “)
€
) s
=-—— —1n <cosh ~> (14)
b P 2b

2 (I have been informed in a private communication that C. A.
Hachemeister has previously derived general formulas for these
capacitances. His results are in a different form than mine, and their
equivalence was not checked.)

3S. B. Cohn, “Characteristic impedance of the shielded-strip
transmission line,” TrRaNs. IRE, vol. MTT-2, pp. 52-57; July, 1954.
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Ociober

(17)

34
, s Even-Mode Case
CfO O» -
b 4 s For the even mode, the characteristic impedance is
= —1In{1 4+ coth — .
€ T 2b given by
s 2 s w I s
=————ln<sinh—>. (15) Zoe - )
b T 2b b b b
94.15 ohms
30— T = , (16)
S __{ w +1<C,<l‘>+cl<t s)}
3 €r — - e\ 7 T
%! = Vel 0T 2\ '\ “\bo b
BN . - where C;/(¢/b) is the fringing capacitance for a single
= \‘ i . - thick strip of thickness t* Cr.'(¢/b, s/b) is the fringing
- N e | capacitance at the coupled edge of a thick strip in the
¥ 20— \\ - ’ even mode. The following approximation for Cr'(¢/b,
p } N T }7 - s/b) in terms of known quantities is assumed:
5 N | Ve s
2 s \\ Chol0u e Cyd (0’ _)
h N[ - ios l b
v NE ) Crdl— =) =C/\—)——7
o - b b b C/(0)
= N -
5 10 ‘\ — This relation gives the correct result for ¢/6—0, s/5—0,
. RIQREL N — and s/b—> . It is expected to give good results through-
LT Crel0)7e = NG out the range of interest. Substitution of (17) in (16)
05 »// e NUEN (with a certain amount of manipulation) vields the
o / ' YA following approximation for Zy.:
. L
= ——— ¢
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s
b

Fig. 7—Fringing capacitances for coupled strips of zero thickness.

Egs. (14) and (15) are plotted in Fig. 7, where it is seen
that they merge into (13) for s/b=2. As 5/6—0, C;,’—0
and C;,’~»> . Egs. (14) and (15) agree, as they should,
with Marcuvitz's equivalent circuit for a transverse
slit in the common broad wall between two wave-guides.*
Also, they agree with Oliner’s® equivalent circuit for a
transverse gap in a single strip, which he deduced from
Marcuvitz’'s expressions.

CourrLeED Tuick STRIPS IN UNIFORM DIELECTRIC

A rigorous solution for coupled thick strips has not
been obtained, but the approximate formulas given
below should be sufficiently accurate for most purposes.
These formulas are based on the solution for zero-
thickness strips, and on the fringing-capacitance formu-
la for a thick semi-infinite plate between ground planes.
Consequently, the resulting formulas are expected to
have their best accuracy for f less than about 0.1, and
w/b=0.35. However, they may be used with diminished
accuracy considerably outside these ranges. In all
cases, the phase velocity is given by (1).

4 N. Maurcuvitz, “Waveguide Handbook,” McGraw-Hill Co.,
Inc., New York, N. Y., pp. 373-375; 1951,

8 A. A. Oliner, “Equivalent circuits for discontinuities in bal-
anced strip transmission line,” Trans. IRE, vol. MTT-3, pp. 134—
143; March, 1955.

w ! s { 1
Zool—r —>» — ) = —
b b b ] <w z> C/(0)
Z() —
{ b b
1 1 -1
— ohms,

w w s
Zo <—, 0> ZOe<——, 0, ——>
b b b
The values Zo(w/b, t/b) and Zo(w/b, 0) are characteristic
impedances of single strips, which may be read from a
graph in reference !, Zo.(w/b, 0, s/b) is the even-mode
zero-thickness-strip characteristic impedance givea

above and C,'(¢/b) and C;'(0) are fringing capacitances
that are also given graphically in reference 2.

(18)

Odd-Mode Case

For the odd mode, the following definition for Cy’ is
assumed when s is large compared to f.

i (0.7)

t s N P\
(L) — (D) N
b b b C/(0)

As in the even mode case, this leads to
/()
p <w t s> 1 N v
“\o " 5 b ] <w 1> C/(0)
Zol—>

(19)

b b
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1 1
— -\ —! ohms.

w s w
w(o) Gl
b b b

The definition of terms in (20) is similar to that given
for (18).

For s small, (19) can not be expected to be valid, and
a better approximation for Cy' is

C ( 14 S> o (O S) + ¢

—, ) = L —
"\ b AN s
where €(t/s) is the parallel-plate capacitance across the
gap per unit length. Manipulation of (21) gives

w ¢ s
Z()o "g‘} 77 ?)

1 1 1

(o) 12(Gg) (o)
“O\B \b b \p’

’ ! | -
“(3) oo
2 v) _co),
377 € e ) 377s

(20)

(21)

ohms. (22)

A judicious estimate of the wvalid ranges for (20) and
(22) is s/t=5 for the former and s/t<5 for the latter.

StrRIPS PRINTED ON DIELECTRIC SHEET

For the cross section of Fig. 3(c), (18) should be used
for the even-mode case for all s/¢, while (20) should
yield fair results for the odd mode when s/¢=10. How-
ever, for s/£ <10, the following approximation for Cyo’ is

proposed:
s
A (——; 0>

(b Y eron )

"\b b "\ 377

The last term in this expression (derived in Appendix B)
is the capacitance across the gap due to the field flux
inside the dielectric sheet, subject to the assumption
that only a tangential component of electric field exists
on the dielectric sheet surfaces in the gap region. This
assumption gives good results for s/¢ small, but is poor
for s/t large. The quantity e, = €€, is the absolute dielec-
tric constant of the dielectric sheet, while Zy(s/t, 0) is
the characteristic impedance of a shielded single-strip
air-dielectric line whose ground plate spacing is ¢, strip
width is s, and strip thickness is zero. Zy(s/¢, 0) may
therefore be obtained from the characteristic-impedance
graph.!

Based on (23), the capacitance per strip, andfper
unit length, for the odd mode is

w i s
Cog(>; — —)
b b b

(23)
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37760 1 1
- 3T -

w(iog)  [2G5) 209
b b b b b
, 2€p€rsZ o i; ())
- Z[C/ <7) - C/(0>] +

¢
— (24
377 (24)
The corresponding inductance is not affected by e.
It can be deduced from Co by applying elementary
transmission-line theory as follows:

1
Ly = —————— 25
’ (12C00 er=1 ( )
and
Lo 1 1 1
Z()o = — = '—/‘/ . (26)
COo c C()o ers>1 C()o ers=1
Therefore
w ¢ s
n(Z L)
b b b
1 1 1
== —I— _—
w s w 14 w A
Z00<——, 0,—> Zo(—, —) ZO<—, 0)
b b L b b b /
¢ s —112
cy <?> —C/(0) A (7, 0>}
- 2
37760 + 3772 J
1 [ 1 1
. + — —
w(nd) Gd) G
00 b y Yy b 0 b b 0 b J ‘
! 1
¢/ () = ¢/
b
37760
s —1/2
2z o)

This should give good results for s/¢=10.

The phase velocity of the even mode cannot be com-
puted accurately, but will usually be only a per cent or
so less than the velocity of light in free space. However,
the phase velocity of the odd mode will be affected
considerably by the field in the dielectric sheet in the
gap region. The following approximate formula gives
the ratio of the phase velocities of the two modes.

/1+>z (w 0 S)Z<S o>/3772
Y00 Ny ) N

Yoe w N N
4/ t2ezu (0. 2) (4 o) s
b b !

- (28)
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APPENDIX A
DERIVATION OF Zy,

Fig. 8 shows the successive transformations used in
the conformal-mapping solution for the odd mode in
coupled strip line. The solid boundaries denote “electric”
(or perfectly conducting) walls, for which EX#n=0 and
H-n=0, while the dotted boundaries denote “magnet-
ic” walls, for which E-n=0 and HX#n=0. Therefore,
inside the rectangle in Fig. 8(a) the electric and magnet-
ic field lines form a uniform rectangular grid, and in
terms of the dimensions of the rectangle shown in the
figure, the characteristic impedance of the transmission
line whose cross section is the rectangle is given by

]

Zy = 1207 - —— ohms. (29)
2K
2V
w PLANE
uz=-K u=K
v=K!' v=K'
12 [ 6!
| |
I |
13 4 51 N
]
us-K \u=o u=K
vz0 vz0 v:0
(a)
l 2 3 5 6 !
t:-co L -1 | L o
k k
{b)
t' PLANE
3 P 3 5 6
:- ik JE Y
t=-co (0] p e = oo
(c)
Ty
y
l:\z 6'
: -
[}
kp____3_._5 _______________ —sx
0,0 Xy Xp
(d)

Fig. 8—Transformations used in the derivation of Zy,.

Due to the properties of conformal mapping, the
characteristic impedance of a given cross section is not
changed by successive analytic transformations. In this
derivation, three successive transformations are used:
transformation of the region inside the rectangle in the
w plane into the entire upper half of the ¢ plane; the
upper-half ¢ plane into the upper-half ¢ plane; and the
upper-half ¢/ plane into the bounded region in the z
plane shown in Fig. 8(d). Hence the characteristic im-

IRE TRANSACTIONS—MICROWAVE THEORY AND TECHNIQUES

October

pedance of the z plane cross section is given by (29).

Examination of this cross section shows it to be equiva-

lent to one-quarter of the coupled-strip cross section,

and to have the field distribution shown in Fig. 2(a)

for the even mode. Thus, Zy, is related to Z, by
ZO K’

Zoy = — = 307 — -
2 K

(30)

It now remains to relate K and K’ to the dimensions of
the coupled strip line.

The transformation from the interior of the rectangle
in the w plane to the upper-half ¢ plane is given by Ober-
hettinger and Magnus,® and the information essential
to our purpose is shown in Figs. 8(a) and 8(b). Corre-
sponding points on the boundaries in the w and ¢ plane
are indicated by numerals 1 to 6. The coordinates of
these points in the two planes are related by

K = K(k)
K' = K(F)
where K (k) and K(k') are complete elliptic integrals of

the first kind with parameter k2 and %’ respectively. %’
is related to k& by

(31)
(32)

B o= /1 — k2% (33)

The transformation from the ¢ plane to the ¢’ plane is
made purely for convenience, since it greatly simplifies
the evaluation of the various constants in the transfor-
mation to the z plane. The function used to connect fand
¢ is

1+ &
= :

1— ki (39

This “bilinear” function transforms the upper-half ¢
plane into the upper-half ¢’ plane, and the real ¢ axis
into the real ¢’ axis. However, the points on the real ¢’
axis are distributed in a manner better suited for the
next step. The coordinates of corresponding points
are shown in Figs. 8(b) and (c).

The final transformation to the z plane is carried
out by the Schwartz-Christoffel method. This tech-
nique is described in various books, such as “Static
and Dynamic Electricity,” by W. R. Smythe,” and
therefore the reader will be assumed to be familiar with
its principles. The differential equation relating the ¢’
and z planes is

d
i = C(' — )%t — t")oe(t' — 1p")P, (35)

where t,” is the value of ¢’ at the point corresponding to
the nth corner in the z-plane boundary, and

8 F. Oberhettinger and W. Magnus, “Anwendung der Ellip-
tischen Funktionen in Physik und Technik,” Springer-Verlag, Berlin,
p. 32; 1949,

7W. R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y., p. 80 ff.; 1939.
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Op

anf_l

™

(36)

where «, is the angle in radians inside the z plane
boundary at the nth corner. The values of ¢,/, 2,, a, and
B, are summarized below:

14

Point fn Zn ay B

2 0 in /2 -3

6 o0 0 0 —1

P P 0 w/2 —%

thus

dz C c’
= e = (37
di' = VU — o) = P)

where C/(t'— =) is treated as a new constant C’. (This
fails only at ¢’ = «, where it does not matter.) Eq. (37)
may be integrated with the aid of a table of inetgrals
(e.g., B. O. Peirce?):

v — 5
z=C’-2tanh‘1/‘/ p—}—C”.

t,

(38)

We see at once that €' =0, since z is required to be
zero ‘when t'=p. Also, insertion of the corresponding
points z=jy; and #’ =0 shows that C'=v;/m. Hence (38)
reduces to

2
z = —y—l-temh*1 4/1 _r
T v

Next, we will substitute corresponding values of ¢’ and
z at the edges of the strip.

(39)

2 14+ k \12
2 = 2L tanht <1 - p) (40)
T 1— %
1—k \U2
X9 = — tanh™1 {1 - — 41
o < 1+ % p) 4

But the dimensions b, s, and w of the coupled strip line
are related to the z plane dimensions by

b= 2y, s = 2x, 2w+ s = 2ux (42)
and therefore
s 2 1+ % 1/2
— = — tanh™! <1 —- > (43)
b T 1—%
2w+ s 2 1 — 12
———— = — tanh™! <1 o p> (44)
b T 14k

It now remains to eliminate p from (43) and (44) and
to solve for k. The use of several hyperbolic-function
identities leads to the following result:

8 B. O. Pierce, “A Short Table of Integrals,” 3rd Edition, Ginn
and Co.; p. 18, Eq. 113; 1929,
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T W
k = tanh <44> (45)
2 b
When the subscript “e” is added to k2 and &’ to denote
the even mode, (45), (30), (31), (32) and (33) are equiva-
lent to (5), (6) and (7).

Derivation of Zg,

The procedure and transformation functions are
exactly the same {or Zg, as for Zg., except that the point
P is placed between points 6" and 2 instead of between
2 and 3 in Figs. 8(c) and (d). Also, point 2 is made to
occur at z=0, and point P at z=jy,. These changes
cause the vertical section of boundary between z=0
and z=jy; to be an electric wall instead of a magnetic
wall. As a result, the field inside the z-plane boundary is
equivalent to that in the coupled strip line for the odd
mode, and

After the same steps are carried out as above, the for-
mula for £ is found to be

T W
k = tanh <———>
2 b

When the subscript “0” is added, (2), (3) and (4) result.
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Fig. 9—Equivalence between the region insided a printed
dielectric sheet and a shield strip line,

APPENDIX B
GaP CAPACITANCE IN THE PRINTED-SHEET CASE

Fig. 9(a) shows the region that is assumed to be
equivalent to the printed dielectric sheet in the vicinity
of the gap between parallel strip pairs. A magnetic
wall may be inserted in the horizontal plane ol sym-
metry without disturbing the field, and then the sepa-
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rated halves of the region can be arranged as in Fig. 9(b)
without disturbing the field or the capacitance. Finally,
Babinet's transformation is applied to Fig. 9(b), causing
all electric and magnetic walls and E and H fields to be
interchanged. Thus the E field pattern in (b) 1s equiva-
lent to the H field pattern in (c). By reversing the direc-
tion of the H field lines in the lower half of (c¢), the
magnetic walls on each side of the electric-wall strip
may be removed. By Babinet’s principle, capacitance
per unit length Cy= Cysp in (b) is related to inductance
per unit length Ly in (c¢) by Co/e=L¢/p. Then since

Ly = Zo/Cy

October

where ¢ is the velocity of light and Z, is the characteristic
impedance of the cross section in Fig. 9(c), we may write

Zy
37T%

Cgap
However, if the dielectric sheet has a relative dielectric
constant €., this should be rewritten as

€0
377%

€0€rsZo

Ceap = -
P 377

where Z; and ¢ are evaluated for ¢,=1.

High-Power Ferrite Load Isolators

ALVIN CLAVINY

Summary—The principles of ferromagnetic resonance have been
well described in literature. It is the purpose of this paper to point out
the application of these principles to the design of practical micro-
wave components, especially for high power. The various types of
ferrite microwave circuits that can be used in the design of a load
isolator are presented. The advantages and disadvantages of each of
these circuits are discussed in regard to the electrical, mechanical,
thermal, and magnetic field requirements. Experimental data are
given for the optimum design of nonreciprocal ferrite absorbers for
rectangular guide. Finally, practical design information for a power
circulator in rectangular waveguide is presented which has been
modified for use as a load isolator. This device has extremely high
isolations (50 db) and low ingertion loss (.5 db), and has maintained an
isolation in excess of 30 db over a 25 per cent bandwidth with a
permanent magnet field. Power handling ability of 250 kw peak with
a .001 duty cycle is easily accomplished without external cooling.
This isolator requires quite small magnetic fields for proper opera-
tions and hence packaged isolator is quite lightweight. Use of this
power circulator for high-power modulators and duplexersis discussed,

INTRODUCTION

HE principles of ferromagnetic resonance at
Tmicrowave frequencies have been presented by a

number of authors.}=3 It is not the purpose of this
paper to elaborate on their work, but instead to discuss
the application of the theory to the design of practical
microwave components. According to the theory, if an
H field is circularly polarized in a plane perpendicular to
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the magnetization of a ferrite rod or slab, an increasing
phase shift and absorption of power occurs as the val-
ue of the magnetizing field is made higher. There is a
particular value of the magnetizing field which brings
the ferrite into gyromagnetic resonance whenever the
sense of the circular polarization is positive (the same
rotational sense as the coil current producing the mag-
netizing field). At this point, a large amount of power is
absorbed from the rf field by the ferrite; however, little
is absorbed from a wave having negative sense of circu-
lar polarization. A plot of the phase shift and power
absorption is shown in Fig. 1 as a function of the field
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Fig. 1—Relative absorption and phase shift of positively-polarized
wave with respect to the negatively-polarized wave.

strength or rf frequency. This is a typical resonant
dispersion curve and it should be noted that it is possible
to obtain phase shift with very little power absorption



